公司:重庆环洁智创新科技有限公司
主营:产品研发设计、模具加工生产
手机:15978927637
地址:重庆茶园经开区美林路16号昌龙国际A9栋5楼
电路板设计中如何处理电路设计的高精度设计?
老铁们,大家好,相信还有很多朋友对于电路板设计中如何处理电路设计的高精度设计?和机电一体化系统的设计都有哪些内容方法的相关问题不太懂,没关系,今天就由我来为大家分享分享电路板设计中如何处理电路设计的高精度设计?以及机电一体化系统的设计都有哪些内容方法的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
大家设计电路主要是用哪款EDA软件初衷又是为什么呢
电源开发离不开设计,那么都有那些软件来支持工程师们的工作呐?笔者整理了下电源电路设计常用软件合集。
一、SPICE模拟电路仿真
用于模拟电路仿真的SPICE(SimulationProgramwithIntegratedCircuitEmphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTRAN语言开发而成,主要用于大规模集成电路的计算机辅助设计。
SPICE的正式实用版SPICE2G在1975年正式推出,但是该程序的运行环境至少为小型机。1985年,加州大学伯克利分校用C语言对SPICE软件进行了改写,1988年SPICE被定为美国国家工业标准。与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。
现在用得较多的是PSPICE6.2,在同类产品中是功能最为强大的模拟和数字电路混合仿真EDA软件,它可以进行各种各样的电路仿真、激励建立、温度与噪声分析、模拟控制、波形输出、数据输出、并在同一窗口内同时显示模拟与数字的仿真结果。无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库。
二、PSPICE信息电子电路设计软件
PSPICE则是由美国Microsim公司在SPICE2G版本的基础上升级并用于PC机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得到广泛应用,并且从6.0版本开始引入图形界面。1998年著名的EDA商业软件开发商ORCAD公司与Microsim公司正式合并,自此Microsim公司的PSPICE产品正式并入ORCAD公司的商业EDA系统中,而后,ORCAD被Cadence收购。
在随后推出的PSPICERelease9.0与传统的SPICE软件相比,PSPICE9.0在三大方面实现了重大变革:首先,在对模拟电路进行直流、交流和瞬态等基本电路特性分析的基础上,实现了蒙特卡罗分析、最坏情况分析以及优化设计等较为复杂的电路特性分析;第二,不但能够对模拟电路进行,而且能够对数字电路、数/模混合电路进行仿真;第三,集成度大大提高,电路图绘制完成后可直接进行电路仿真,并且可以随时分析观察仿真结果。
虽然PSPICE应用越来越广泛,但是也存在着明显的缺点。由于SPICE软件原先主要是针对信息电子电路设计而开发的,因此器件的模型都是针对小功率电子器件的,对于电力电子电路中所用的大功率器件存在的高电压、大注入现象不尽适用,有时甚至可能导致错误的结果。PSPICE采用变步长算法,对于以周期性的开关状态变化的电力电子电路而言,将造成大量的时间耗费在寻求合适的步长上面,从而导致计算时间的延长,有时甚至不收敛。另外,在磁性元件的模型方面PSPICE也有待加强。
PSPICERelease9.0共有六大功能模块,其中核心模块是PSPICEA/D,其余功能模块分别是:Capture(电路原理图设计模块)、StimulusEditor(激励信号编辑模块)、ModelEditor(模型)。
三、Saber开关电源首选
Saber是美国Analogy公司开发并于1987年推出的模拟及混合信号仿真软件,Saber软件易主,成为Synopsys公司产品。被誉为全球最先进的系统仿真软件,也是唯一的多技术、多领域的系统仿真产品。与传统仿真软件不同,Saber在结构上采用硬件描述语言(MAST)和单内核混合仿真方案,并对仿真算法进行了改进,使Saber仿真速度更快、更加有效、应用也越来越广泛。应用工程师在进行系统设计时,建立最精确、最完善的系统仿真模型是至关重要的。
Saber可同时对模拟信号、事件驱动模拟信号、数字信号以及模数混合信号设备进行仿真。利用Calaversas算法,Saber可以确保同时进行的两个仿真进程都能获得最大效率,而且可以实现两个进程之间的信息交换,并在模拟和数字仿真分析之间实现了无缝联接。
在Saber中,仿真模型可以直接用数学公式和控制关系表达式来描述,而无需采用电子宏模型表达式。为了解决仿真过程中的收敛问题,Saber内部采用5种不同的算法依次对系统进行仿真,一旦其中某一种算法失败,Saber将自动采用下一种算法。通常,仿真精度越高,仿真过程使用的时间也越长。普通的仿真软件都不得不在仿真精度和仿真时间上进行平衡。Saber采用其独特的设计,能够保证在最少的时间内获得最高的仿真精度。Saber工作在SaberDesigner图形界面环境下,能够方便的实现与CadenceDesignSystem、MentorGraphics和Viewlogic的集成。
通过上述软件可以直接调用Saber进行仿真。
Saber的典型案例是航空器领域的系统设计,其整个设计过程包含了机械技术、电子技术、液压技术、燃油系统、娱乐系统、雷达无线技术等复杂的混合技术设计与仿真。从航空器、轮船、汽车到消费电子、电源设计都可以通过Saber来完成。
在开关电源设计中,如果有变压器,saber仿真是最好的,变压器模型比较全。saber仿真现在主要问题就是没有教材,不方便学习。
四、IsSpice交互式仿真软件
IsSpice是美国Intusoft公司推出的一种商业仿真软件,是ICAP/4软件集成系统的重要组成部分。InSpice是具有完善的仿真控制功能的交互式仿真软件,其主要特点包括:
(1)瞬态波形显示;
(2)电路元件电压、电流、功耗及模型参数显示;
(3)采用ICL交互式编程语言控制仿真过程;
(4)可进行成组参数扫描;
(5)可进行交流、直流、瞬态、噪声、傅立叶、失真度、温度、直流灵敏度、蒙特卡罗分析和最佳化分析;
(6)可测量电路参数临界值。
ICAP/4软件集成系统主要由SpiceNet、PreSPice、InSpice和IntuScope四大功能模块组成。ICAP/4的工作流程是:首先进入SpiceNet绘制电路图,并生成相应的Netlist文件,然后执行IsSpice仿真软件模块,在仿真之前系统将自动连接PreSpice仿真资料库中的元件模型,仿真完成之后利用IntuScope波形分析处理模块对仿真模型进行分析处理。
IntuScope波形分析处理软件能够实现数字式存储示波器和频谱分析仪的功能,能够对仿真结果进行实时分析和计算处理。主要能够
(1)显示各种分析类型的仿真波形;
(2)波形分析参数包括:有效值、峰-峰值、平均值、最大值、最小值;
(3)允许同时显示和分析大量波形;
(4)可进行回归、滤波、增益、相位、上升/下降时间分析和计算。
SpiceNet电路原理图绘制模块
SpiceNet是电路原理图绘制模块,主要实现电路原理图的绘制、Netlist文件的自动生成、瞬态波形显示以及交互式仿真控制。SpiceNet与当前流行的各种仿真系统兼容,其输出文档格式适用于Mentor、OrCAD和Protel系统。ICAP/4工业版的PreSpice元件资料库中包含10,000种以上的元件模型,以ASCⅡ格式保存,用户可以随时通过仿真模型浏览器PartsBrowser对不同元器件供应商提供的元件模型进行浏览。同时,ICAP/4系统还提供了100多个通用模型,输入相应的元件参数后即可直接调用。另外,用户可以即时通过Internet下载最新的元件库。
五、EWB模数电路的混合仿真
20世纪90年代初推出的电路仿真软件。相对于其它EDA软件,它是较小巧的软件(只有16M)。但它对模数电路的混合仿真功能却十分强大,几乎100%地仿真出真实电路的结果,并且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器和电压表、电流表等仪器仪表。它的界面直观,易学易用。它的很多功能模仿了SPICE的设计,但分析功能比PSPICE稍少一些。
六、MATLAB产品族
它们的一大特性是有众多的面向具体应用的工具箱和仿真块,包含了完整的函数集用来对图像信号处理、控制系统设计、神经网络等特殊应用进行分析和设计。它具有数据采集、报告生成和MATLAB语言编程产生独立C/C++代码等功能。
七、PCB设计软件
PCB(Printed—CircuitBoard)设计软件种类很多,如Protel;OrCAD;Viewlogic;
PowerPCB;CadencePSD;MentorGraphices的ExpeditionPCB;ZukenCadStart;
Winboard/Windraft/Ivex-SPICE;PCBStudio;;TANGO等等。其中Protel是个完整的全方位电路设计系统,包含了电原理图绘制、模拟电路与数字电路混合信号仿真、多层印刷电路板设计(包含印刷电路板自动布局布线),可编程逻辑器件设计、图表生成、电路表格生成、支持宏操作等功能,并具有Client/Server(客户/服务器体系结构,同时还兼容一些其它设计软件的文件格式,如ORCAD、PSPICE、EXCEL等。
机电一体化系统的设计都有哪些内容方法
机电一体化系统的设计:
一、机电一体化系统开发的设计思想
机电一体化的优势,在于它吸收了各相关学科之长并加以综合运用而取得整体优化效果,因此在机电一体化系统开发的过程中,要特别强调技术融合,学科交叉的作用。机电一体化系统开发是一项多级别、多单元组成的系统工程。把系统的各单元有机的结合成系统后,各单元的功能不仅相互叠加,而且相互辅助、相互促进、相互提高,使整体的功能大于各单元功能的简单的和,即“整体大于部分的和”。当然,如果设计不当,由于各单元的差异性,在组成系统后会导致单元间的矛盾和摩擦,出现内耗,内耗过大,则可能出现整体小于部分之和的情况,从而失去了一体化的优势。因此,在开发的过程中,一方面要求设计机械系统时,应选择与控制系统的电气参数相匹配的机械系统参数;同时也要求设计控制系统时,应根据机械系统的固有结构参数来选择和确定电气参数。综合应用机械技术和微电子技术,使二者密切结合、相互协调、相互补充,充分体现机电一体化的优越性。
二、机电一体化系统设计方法
拟定机电一体化系统设计方案的方法有取代法、整体设计法和组合法。
1、取代法
这种方法是用电气控制取代原传统中机械控制机构。这种方法是改造传统机械产品和开发新型产品常用的方法。如用电气调速控制系统取代机械式变速机构,用可编程序控制器或微型计算机来取代机械凸轮控制机构、插销板、步进开关、继电器等,以弥补机械技术的不足,这种方法不但能大大简化机械结构,而且还可以提高系统的性能和质量。这种方法的缺点是跳不出原系统的框架,不利于开拓思路,尤其在开发全新的产品时更具有局限性。
2、整体设计法
这种方法主要用于全新产品和系统的开发。在设计时完全从系统的整体目标考虑各子系统的设计,所以接口简单,甚至可能互融一体。例如,某些激光打印机的激光扫描镜,其转轴就是电动机的转子轴,这是执行元件与运动机构结合的一个例子。在大规模集成电路和微机不断普及的今天,随着精密机械技术的发展,完全能够设计出将执行元件、运动机构、检测传感器、控制与机体等要素有机地融为一体的机电一体化新产品。
3、组合法
这种方法就是选用各种标准模块,像积木那样组合成各种机电一体化系统。例如,设计数控机床时可以从系统整体的角度选择工业系列产品,诸如数控单元、伺服驱动单元、位置传感检测单元、主轴调速单元以及各种机械标准件或单元等,然后进行接口设计,将各单元有机的结合起来融为一体。在开发机电一体化系统时,利用此方法可以缩短设计与研制周期、节约工装设备费用,有利于生产管理、使用和维修。
三、机电一体化系统设计的内容
在机电一体化系统(产品)中控制系统设计的主要内容可归结为:确定系统整体控制方案、确定控制算法、选择微型计算机、进行系统的硬件和软件设计,以及系统统调。
1、确定系统整体控制方案
(1)确定控制任务
在设计系统以前,必须对控制对象的工作过程进行深入的调查、分析和熟悉,并明确实际应用中的具体要求,按机械与电子功能划分方案确定系统所要完成的任务,然后用控制流程图或其他适当形式描述控制过程和任务,写成设计任务说明书,作为整个控制系统设计的依据。
(2)构思控制系统的整体方案
1)确定系统的控制结构形式是开环还是闭环控制。
2)采用闭环控制时应考虑检测传感器的选择和所要求精度级别,并考虑机构安装、使用环境等问题。
3)选择执行元件是电动、气动还是液压或其他,根据控制对象具体要求,比较方案的优缺点,择优而用。
4)明确微机在系统中的作用:是设定值计算、直接控制还是数据处理和应具备的功能,需要哪些输入/输出通道和配置哪些外围设备等。最后,画出系统组成的原理框图和附加说明,作为进一步设计的基础,并初步估算成本。
2、建立数学模型确定控制方法
建立系统的数学模型是个复杂过程,也是一个试探的过程,需要反复权衡。
1)根据已初步确定的控制系统的物理结构,采用合适的控制理论方法建立和组成各环节以及整个系统的数学模型表达形式。通过静、动特性计算,为计算机进行运算处理提供依据。
2)根据不同的控制对象和不同的控制性能指标要求,选择不同的控制算法。对过程控制设备的直接数字控制系统常用PID调节的控制算法;在位置数字随动系统中常用实现最少拍控制的控制算法;机床数字控制中常使用逐点比较法、数字积分法和数据采样法的控制算法。另外,还有多种最优控制的控制算法、随机控制和自适应控制的控制算法等供选择。
3)当控制系统较复杂时,控制算法也比较复杂,为设计、调试方便,可忽略小的非线性、小延时等因素的影响,将控制算法作某些合理的简化。利用计算机系统仿真技术,逐步将控制算法完善,直到获得最好的控制效果。
总之,控制算法的确定是一个反复修正与试验的渐进过程。
3、选择微型计算机
对于微机所承担的任务给定以后,完成同一任务的微机方案有多种。一般以既能完成给定任务(应包括处理确定的控制算法)、又能充分发挥选用微机的功能、再留有一定功能余量为原则来选择。
从控制生产机械或生产过程要求出发,微型机应满足以下要求:
(1)有较完善的中断系统
对于控制用计算机,实时控制功能是一大特点。它包含系统正常运行时的实时控制能力和发生故障时紧急处理的能力。这种处理和控制一般都采用中断控制方式,即CPU及时接收终端请求、暂停原来执行程序,转而执行相应的中断服务程序,待中断处理完毕,再返回继续执行原程序。
在选用与CPU相应的接口芯片时也应有中断工作方式,以保证控制系统能满足生产中提出的各种要求。对于比较复杂的控制,要考虑采用实时操作系统。
(2)足够的存储容量
由于微型机内存容量有限,当内存容量不足以存放程序和数据时,应扩充内存,或配备适当的外存储器(如硬磁盘等)。
(3)完备的输入/输出通道
输入输出通道是系统外部过程和微机交换信息的通道。根据实际需要有开关量输入/输出通道、模拟量输入/输出通道、数字量输入/输出通道和实现快速、批量交换信息的直接数据通道。通道的操作方式有串行、并行以及随机选择与按某种预订顺序进行工作等。
(4)微处理器芯片的选择
这一选择的实质就是确定能满足控制功能要求的微处理器的字长、速度和指令系统。这三者是相互依存的。一般选择:
1)对通常的顺序控制、程序控制可选用1位微处理器;
2)对计算量小、计算精度和速度要求不高的系统可选用4位微处理器,如计算器、家用电器控制及简易控制等;
3)对计算精度要求较高、处理速度较快的系统可选用8位微处理器,如经济型的线切割机床、普通机床的控制和温度控制等;
4)对要求计算精度高、处理速度快的系统统可选用16位或32位微处理器,甚至采用精简指令集运算的芯片RIRC或多CPU,如控制算法复杂的生产过程控制,要求高速运行的机床控制,特别是大量的数据处理等。
(5)系统总线的选择
微型计算机主要由若干块印制电路板(按功能模块设计、制造)构成。各块板之间的连接,当然是通过印制板的插座之间的连线来实现的。通常,为了给使用和维护带来方便,希望插座之间的连线具有通用性——一个系统中的各块印制板可插在任一插座上。同时,也是为了各厂家生产的电路板具有通用性、互换性,就要对插座及连线订个标准。这就是系统总线选择的由来。
目前支持微型计算机系统机构的总线有:STDBus支持8位和16位字长;MultiBus工型可支持16位字长,Ⅱ型可支持32位字长;S-100Bus可支持16位字长;VERSABus可支持32位字长,以及VMEbus可支持32位字长等。生产厂家为这类总线提供各种型号规格的OEM(初始设备制造)产品,包括主模块和从模块,由用户任意选配。
4、系统总体设计
系统设计主要是依据上述控制方案、设计所要求和选用的微机类型,对系统进行具体的设计。其设计可分为硬件的接口设计和软件设计两大类型。
在对系统总体设计时,一个最重要的问题是如何解决微机、被控对象和操作者这三者之间可靠地适时进行信息交换的通道和分时控制的时序安排。也就是综合考虑用硬件配置和软件措施解决系统运行的次序安排,以保证系统有条不紊地运行。
(1)接口设计
对于一种产品(或系统),其各部件之间,各子系统之间往往需要传递动力、运动、命令或信息,这都是通过各种接口来实现的。机械本体各部件之间、执行元件与执行机构之间、检测传感元件与执行机构之间通常是机械接口;电子电路模块相互之间的信号传送接口、控制器与检测传感元件之问的转换接口、控制器与执行元件之间的转换接口通常是电气接口。
机电一体化产品的内外接口实际上就是一种进行物质、能量和信息交换的界面,它具有存储、转换和服务功能。按功能可以将接口划分为以下3种:
1)零接口。不需进行任何转换,把具有结合关系的两部分直接连接起来称为零接口,如连接管、电缆、接线柱和刚性联轴节等。
2)普通转换接口。在具有结合关系的两部分之间存在能量或信息的转换,但不含微处理器的接口为普通转换接口。如减速器、变压器、电磁离合器、放大器、光电耦合器、A/D转换器、D/A转换器等。
3)智能转换接口。它是一种含有微处理器的转换接口,具有可编程的特点,因而能够自动改变接口条件,如由微处理器编程的8255A,8279,PIO等。
目前,大部分硬件接口和软件接口都已标准化或正在逐步标准化。对于硬件接口,在设计时可以根据需要选择适当的接口,再配合接口编写相应的程序。
(2)操作控制台设计
微机控制系统必须便于人机联系,通常都要设计一个现场操作人员使用的控制台。这个控制台一般不能用微机所带的键盘代替。原因是现场操作人员需要的是简单、明了、安全的操作面板,以实现对机器的操作。所以,要求操作控制台应有以下功能:
1)有一组或几组数据输入键(数字键或拨码开关等),用于输入或更新给定值、修改控制器参数或其他必要的数据。
2)有一组或几组功能键或转换开关,用于转换工作方式,启动、停止系统或完成某种指定功能。
3)有一个显示装置或显示屏,用于显示各种运行状态、参数及故障指示等。控制台上应该有一个“紧急停止”按钮,用于有紧急事故时停止系统运行,转入故障处理。
应当明确指出,控制台上每一种信号都与系统的运行状态密切相关。设计时,必须明确这些转换开关、按钮、键盘、显示器和故障指示灯的作用和意义,仔细设计控制台的硬件及其相应的管理程序,使设计的操作控制台既能方便操作又保证安全可靠,即使操作失误也不会引起严重后果。
(3)微型计算机控制系统的电源设计
微机控制系统中的电源,根据需要可以有不同的类型(直流和交流)和规格(电压和功率)。按照使用情况,对性能的要求也不尽相同,在设计过程中应按实际要求合理选用调试,并控制电压变动。电源本身要具有过压、短路、过载保护和热保护,否则将会造成不可弥补的损失。
(4)整机的安装、联接设计
这是一种整体结构设计。微机控制系统安装既包括了与被控对象的联接安排,也考虑了主机本身的安装联接问题。其设计原则应该是安装、联接的可靠性和使用、装配、维护的方便性。
1)安装、联接结构具有防震性,即印制电路板、接插件和元器件包括电缆等应牢固地安装在同一个机壳上,不因振动而松动。
2)采用标准或专用、制造质量好的防松接插件,以保证接触可靠而又使用、维护方便。
3)布线结构要合理,能防止相互间的电磁耦合干扰。一定要使信号线和功率线进行隔离,分别走线。对模拟信号更要注意走线的长短和屏蔽,如走线太长,需要考虑进行信号增强等措施。
4)正确安装安全地线、信号地线、屏蔽地线以及功率地线和强电地线,最终要进行地线连接。地线要采用一点接地型,即把信号地线、功率地线、被控对象地线(安全地)等连接到公共接地点。而总的公共接地点必须与大地接触良好,一般接地电阻要小于(4~7)Ω。
(5)软件设计
对于选定的微机控制系统,其微机本身已有一定的软件支持,一般这些软件要求用户了解其使用方法和基本原理。如果把微型计算机专门为某一控制领域而设计成专用的控制计算机,用户就需要利用计算机的指令系统和相应的开发系统来设计系统软件,即控制软件、管理软件、诊断软件等。这些系统软件的设计要求更有专用性和针对性。
在微机控制中,其软件任务大体可以分为数据处理和过程控制两大基本类型。数据处理主要包括数据的采集、数字滤波、标度变换,以及数值计算等等。过程控制主要是使微机按照一定控制算法进行计算,然后进行输出去控制生产。
5、系统联调
微机控制系统设计完成后,硬件电路要进行制作、安装及试验,并进行连续烤机运行。软件各模块要在微机上分别进行调试,使其正确无误,然后存盘。上述工作完成后,就可将硬件与软件组合起来进行系统联调的模拟试验,正确无误后,进行现场实验,直到正式运行。在这个阶段,最重要的是仔细设计模拟调试的方法与步骤,以及所用的测试手段。
此外,在现场试验前,要仔细检查接线,无误后才能进行现场调试。现场调试的步骤根据不同对象要仔细考虑。首先要把涉及的自动保护项目进行实验,确认有效后才可进入功能、参数等项目的试验。
电路板中犹如锡状的密密麻麻的小疙瘩是什么起什么作用呢
估计提问者是个外行人员,又想了解电路板相关的技术知识,电路板中密密麻麻的“小疙瘩”是什么?我想,电路板上类似小疙瘩的东西有:引脚焊点、小电容、小电阻、印制板过孔等。
(1)引脚焊点
如下图所示,为印制板背面的引脚焊点,密密麻麻的看似一个个小疙瘩,其实这是有引脚的元器件焊接在印制板上后的样子,包含引脚和焊锡。
▲印制板焊点
把印制板翻过来,其正面大部分都是元器件,比如电阻、电容、二极管、三极管、LED指示灯、集成电路芯片等,这属于电子行业的技术领域。
▲印制板正面元器件
(2)密密麻麻的小电容
如下图所示,密密麻麻的小电容,一般为0402、0603、0805等封装,焊接在电路印制板上后,由于布局不规则,看似密密麻麻的“小疙瘩”。
▲印制板电容
(3)印制板过孔
如下图,印制板设计时由于不同层之间走线要使用过孔,所以在印制板布线时,会出现很多过孔,由于电流大小不同,过孔的大小也不同,所以印制板上会有许多密密麻麻的过孔,看着也有点像“小疙瘩”。
▲印制板过孔
总结:对于外行人来说可以皮一下称之为“小疙瘩”,但是对于内行的硬件工程师来说,这就是技术精华,前期所考虑设计的东西完全体现在印制板上。
以上是本人的回答,答题不易,如果觉得还可以别忘了点个赞哦!若还有什么不明白的地方请评论区下方留言,若想了解更多相关知识,请关注本头条号,会持续更新内容,谢谢支持!
金旺一一688B有几块电路板
2块
一般的液晶显示器有两块电路板,主板和电源板。(除了液晶面板内部的)当然还会有一到两块小电路板如按键板或指示灯板。液晶电视的就比较不好说了,看产品的功能及定位吧。一般会有主板,电源板,按键板,遥控板,有些还有接口板,音频板。
电路板是怎么生产的上面的线路有什么讲究
电路板的全称是印刷电路板,显然它是通过印刷工艺制作的。
电路板的原材料是覆铜板,它是一块表面有一薄层铜箔的绝缘板。制作时,将PCB图打印出来弄到覆铜板上,让油墨或其它物质覆盖在铜箔需要保留的地方,其他地方裸露,之后使用氯化铁溶液或过硫酸铵溶液进行腐蚀,有物质覆盖的地方的铜接触不到腐蚀液,就保留下来了,而裸露部分的铜则全部被腐蚀掉。这样就做成了电路板的半成品。常用的制作方法有热转印法和感光法,工厂制作一般使用感光法,个人业余制作一般使用热转印法。
PCB制板厚度对电路有什么影响吗
多层的PCB的叠层厚度,直接影响阻抗的控制。成品板的厚度,影响装配的精度。铜箔的厚度,影响散热和电流的直流阻抗。
分时半路板的技术要领
分时半路板是一种电子元器件,它可以将一个信号分成两个或多个不同的时间段进行处理。
它的主要作用是将高频信号分成低频信号,以便更好地处理和传输。
分时半路板的技术要领包括以下几个方面:
1.信号分离:
分时半路板的主要作用是将高频信号分离成低频信号。
这需要使用一些特殊的电路来实现,例如低通滤波器和带通滤波器等。
2.时序控制:
分时半路板需要精确的时序控制,以确保信号在正确的时间段内被处理。
这需要使用一些时序控制电路来实现,例如时钟电路和计数器等。
3.信号重组:
在信号处理完成后,分时半路板需要将信号重新组合成原始信号。
这需要使用一些信号重组电路来实现,例如多路复用器和解复用器等。
4.技术要求:
分时半路板需要具备高精度、高速度、低噪声等技术要求。
这需要使用一些高性能的电子元器件来实现,例如高速运算放大器和高精度时钟等。
操作步骤:
1.确定信号分离的方式,选择合适的低通滤波器和带通滤波器。
2.设计时序控制电路,选择合适的时钟电路和计数器。
3.设计信号重组电路,选择合适的多路复用器和解复用器。
4.选择高性能的电子元器件,例如高速运算放大器和高精度时钟。
5.进行电路设计和布局,进行电路仿真和测试。
6.调整电路参数,优化电路性能。
7.进行电路生产和组装,进行电路测试和调试。
8.最终测试和验证电路性能,确保符合设计要求。
关于电路板设计中如何处理电路设计的高精度设计?到此分享完毕,希望能帮助到您。
- 上一篇:杭州工业设计的公司有哪些(浙大旗下的公司)
- 下一篇:宝安工业设计公司有哪些)